Detecting and explicating interactions in categorical data.
نویسندگان
چکیده
Detecting and explicating interactions in categorical data analyses using cross tabulation and the [chi] 2 statistic can provide salient tests of hypotheses concerning the relationship between two variables measured at the nominal or ordinal levels. For example, researchers usually employ categorical analysis when they are interested in whether members of one group (e.g., males vs. females) differ in the proportion falling into two or more levels of a dependent variable (e.g., in favor of or opposed to sex education in public schools). In this case, the data can be expressed as a two-way table and hypotheses tested with the [chi] 2 statistic. Interpretation of this simplest of two-way tables is straightforward. However, research questions are often more complex than this simple example both in the number of predictor variables and the number of levels of each variable. Researchers typically include other predictor variables (e.g., race, academic status, marital status) to gain a better understanding of more complex relationships among predictors and outcomes. In addition, researchers often employ measures that have more than two levels (e.g., income, race, treatment type, academic status), and they often choose to combine levels in one or more variables to simplify the analyses, meet assumptions, or clarify the results.
منابع مشابه
دیدگاه متخصصین بالینی پیرامون سیستم الکترونیکی تداخل دارو و غذا
Background and Aim: Adverse events in hospitals are found to be a major problem of all health systems in the world. In fact, drug interaction side effects are now the fourth leading cause of death in the U.S. The aim of the current study was to identify the opinions of clinicians working in Shariati and Emam hospitals towards the use of computer applications for detecting drug-food interactions...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملAnalysis of Dynamic Longitudinal Categorical Data in Incomplete Contingency Tables Using Capture-Recapture Sampling: A case Study of Semi-Concentrated Doctoral Exam
Abstract. In this paper, dynamic longitudinal categorical data and estimation of their parameters in incomplete contingency tables are evaluated. To apply the proposed method, a study has been conducted on the data of the semi-concentrated doctoral exam of the National Organization for Educational Testing (NOET). The results of studies such as the obtained confidence intervals and calculating t...
متن کاملDetecting the Change of Clustering Structure in Categorical Data Streams
Analyzing clustering structures in data streams can provide critical information for making decision in realtime. Most research has been focused on clustering algorithms for data streams. We argue that, more importantly, we need to monitor the change of clustering structure online. In this paper, we present a framework for detecting the change of critical clustering structure in categorical dat...
متن کاملUtilizing mutual information for detecting rare and common variants associated with a categorical trait
Background. Genome-wide association studies have succeeded in detecting novel common variants which associate with complex diseases. As a result of the fast changes in next generation sequencing technology, a large number of sequencing data are generated, which offers great opportunities to identify rare variants that could explain a larger proportion of missing heritability. Many effective and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nursing research
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2000